Seismic anisotropy beneath the Afar Depression and adjacent areas: Implications for mantle flow

نویسندگان

  • Stephen S. Gao
  • Kelly H. Liu
  • Mohamed G. Abdelsalam
چکیده

[1] Shear wave splitting is a robust tool to infer the direction and strength of seismic anisotropy in the lithosphere and underlying asthenosphere. Previous shear wave splitting studies in the Afar Depression and adjacent areas concluded that either Precambrian sutures or vertical magmatic dikes are mostly responsible for the observed anisotropy. Here we report results of a systematic analysis of teleseismic shear wave splitting using all the available broadband seismic data recorded in the Afar Depression, Main Ethiopian Rift (MER), and Ethiopian Plateau. We found that while the ∼450 measurements on the Ethiopian Plateau and in the MER show insignificant azimuthal variations with MER‐parallel fast directions and thus can be explained by a single layer of anisotropy, the ∼150 measurements in the Afar Depression reveal a systematic azimuthal dependence of splitting parameters with a p/2 periodicity, suggesting a two‐layer model of anisotropy. The top layer is characterized by a relatively small (0.65 s) splitting delay time and a WNW fast direction that can be attributed to magmatic dikes within the lithosphere, and the lower layer has a larger (2.0 s) delay time and a NE fast direction. Using the spatial coherency of the splitting parameters obtained in the MER and on the Ethiopian Plateau, we estimated that the optimal depth of the source of anisotropy is centered at about 300 km, i.e., in the asthenosphere. The spatial and azimuthal variations of the observed anisotropy can best be explained by a NE directed flow in the asthenosphere beneath the MER and the Afar Depression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentiating flow, melt, or fossil seismic anisotropy beneath Ethiopia

Ethiopia is a region where continental rifting gives way to oceanic spreading. Yet the role that pre-existing lithospheric structure, melt, mantle flow, or active upwellings may play in this process is debated. Measurements of seismic anisotropy are often used to attempt to understand the contribution that these mechanisms may play. In this study, we use new data in Afar, Ethiopia along with le...

متن کامل

The mantle transition zone beneath the Afar Depression and adjacent regions: implications for mantle plumes and hydration

S U M M A R Y The Afar Depression and its adjacent areas are underlain by an upper mantle marked by some of the world’s largest negative velocity anomalies, which are frequently attributed to the thermal influences of a lower-mantle plume. In spite of numerous studies, however, the existence of a plume beneath the area remains enigmatic, partially due to inadequate quantities of broad-band seis...

متن کامل

Investigation of the strength and trend of seismic anisotropy beneath the Zagros collision zone

The Zagros collision zone is known as an active tectonic zone that represents the tectonic boundary between the Eurasian and Arabian plates. A popular strategy for gaining insight into the upper mantle processes is to examine the splitting of seismic shear waves and interpret them in terms of upper mantle anisotropy and deformation. Core phases SK(K)S from over 278 earthquakes (MW ≥ ...

متن کامل

Seismic evidence for hotspot-induced buoyant flow beneath the Reykjanes Ridge.

Volcanic hotspots and mid-ocean ridge spreading centers are the surface expressions of upwelling in Earth's mantle convection system, and their interaction provides unique information on upwelling dynamics. I investigated the influence of the Iceland hotspot on the adjacent mid-Atlantic spreading center using phase-delay times of seismic surface waves, which show anomalous polarization anisotro...

متن کامل

Seismic velocity structure and depth-dependence of anisotropy in the Red Sea and Arabian shield from surface wave analysis

[1] We investigate the lithospheric and upper mantle shear wave velocity structure and the depth-dependence of anisotropy along the Red Sea and beneath the Arabian Peninsula using receiver function constraints and phase velocities of surface waves traversing two transects of stations from the Saudi Arabian National Digital Seismic Network. Frequency-dependent phase delays of fundamental-mode Lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010